1-й, везде

2-й, везде

3-й, везде

4-й, везде


Присоединяйтесь к нам в соцсетях

Главные новости /все

C новой сваркой! ЭСАБ запустила поставки инверторного сварочного аппарата Fabricator ET 410iP
327
Французская компания Legrand решила уйти из России
321
Создаём будущее климатической отрасли: деловая программа выставки «Мир Климата Экспо»
621
Стань участником бонусной программы DD Club!
534
Bоsch и Buderus представили каталоги продукции и решений на 2023 год
544
Не пропустите новую выставку AIRVent 14-17 февраля! Для получения бесплатного билета используйте промокод master
780
Пополнение системы. Обзор аккумуляторных новинок RedVerg
682
17-19 октября 2023 г. в Новосибирске пройдёт очередная Международная выставка специальной техники и майнинга СТМ
807
АО «Завод «Фиолент» удостоен Платинового Знака качества XXI века
849
Жаркая зима 2023. Акция от Powermatic на токарные станки по дереву: патрон в подарок при предзаказе
1065
Очередная выставка в области психологии интерьера и дизайна MosWeekHome состоится в Москве 4-8 апреля 2023 г.
1283
10-я выставка товаров для дачи и загородного отдыха Outdoor Dacha пройдёт 21-23 марта 2023 г. в московском «Экспоцентре»
1241
Столичная компания на треть увеличила поставки лопат для уборки снега
581
Выставки «Белорусский дом», «Деревянное домостроение», «Баня» и «ОВК» пройдут 23-25 марта 2023 г. в Минске
998
Многопрофильная выставка «ЧеченСтройЭкспо 2023» пройдёт в Грозном 24-25 мая
1491
В Санкт-Петербурге прошла стратегическая сессия руководителей подразделений «БДР Термия Рус»
740
Современные стеллажи, позволяющие ускорить процесс отбора товаров на складе
1460
Лучшие в DIY: «ВсеИнструменты.ру» вручили премию российским блогерам
1232
1-3 марта 2023 г. в Якутске пройдёт 20-я специализированная выставка «Стройиндустрия Севера. Энергетика. ЖКХ»
1401
Выставка MITEX 2022: цифры и факты
1190
Семейное страхование — выгода общей страховки
1479
«Российская строительная неделя» вновь соберёт профессионалов строительной отрасли с 28 февраля по 3 марта 2023 г.
1831
Впервые в Казахстане – выставка оборудования и технологий оснащения современных зданий Intelligent Building Expo 2023
1119
Компания «ИТА-СПб» представляет новинку — сверлильный станок нового поколения Powermatic РМ2820EVS
1652
Deli Tools на MITEX 2022. Старт, который запомнят!
1431
Регистрация на выставку AIRVent 2023 открылась! Для получения бесплатного билета используйте промокод master
2446
Caiman в 2022 году вывел на рынок 100 новинок профессиональной садово-парковой техники
1088
Выставка «Мир климата Экспо 2023»: новая реальность – новые возможности
1218
От побед в чемпионате к производственным рекордам с помощью сварочных материалов и оборудования «ЭСАБ»
1545
Регистрация на Aquatherm Moscow 2023 открылась! Для получения бесплатного билета используйте промокод Mforum
2298
В 2023 году выставка «СПТО.Краны» пройдёт 5-7 апреля на новой площадке – в ЦВК «Экспоцентр» — и в обновлённом формате
1774
«Интерскол» на выставке MITEX 2022 представит технологию «Квадро» для сетевых УШМ
1851
Caiman представляет профессиональный ручной инструмент для ухода за садом
1365
8-11 ноября инструмент Deli будет представлен на выставке MITEX 2022. Стенд E501
1414
MITEX 2022: только здесь — все актуальные производители и поставщики оборудования и инструмента
2283
Журнал «Инструменты» + «GardenTools» серии «Потребитель» (объединённый выпуск «2022»)
2120
Открытый диалог о будущем инструмента в деловой программе выставки MITEX 2022
1177
Очередной успех компании «Керамакс» на выставке Weldex 2022
1536
Выставка MITEX 2022: коллективная экспозиция компаний из Китая
1398
Baxi Eco Life — новый газовый настенный котёл, сделанный в Китае
2208

Выставки

Слёт Мастеровых #14 на MITEX 2017: 7-10 ноября, Москва

Interlight Moscow 2017: 7-10 ноября 2017, Москва

Ландшафт Экспо 2018: 2-4 марта 2018, Москва

Batimat Russia 2018: 3-6 апреля, Москва

Интерфлора 2018: 18-20 апреля, г. Москва, Гостиный Двор

Сибирская дача 2018: 26-29 апреля, Красноярск

Intertool Kiev 2018: 15-18 мая, г. Киев, Украина

Unibuild 2018: 6-7 июня, Нальчик

SibWoodExpo 2018: 11-14 сентября, Иркутск

Осень на даче 2018: 13-16 сентября, Красноярск

ФСД 2018 Санкт-Петербург: 28-29 сентября

China Machinery Fair 2018: 30 октября - 1 ноября, Москва

Агропромышленный форум Сибири 2018: 14-16 ноября, Красноярск

Электротехника. Энергетика 2018: 21-23 ноября, Красноярск

Дом. Дача. Дизайн 2019: 14-16 марта, Беларусь, г. Могилев

Дом и Сад 2019: 21-24 марта, Москва

Петербургская зелёная неделя 2019: 26-29 сентября, Санкт-Петербург

CIHS-2019: 10-12 октября, Шанхай (Китай)

ПромЭкспо 2019: 15-16 октября, Волгоград

City Build Russia 2019: 29-30 октября, Санкт-Петербург

Металлообработка и сварка 2019: 20-22 ноября, Красноярск

Ремонт Экспо 2020: 14-16 февраля, Москва

Eisenwarenmesse 2020: 1-4 марта, Кельн (Германия)

ShymkentBuild 2020: 11-13 марта, Казахстан, Шымкент

Коттедж. Строй. Экспо-2020: 2-5 апреля, Хабаровск

Город 2020: 15-17 апреля, Владивосток

Архитектура ДВ 2020: 21-23 мая, Хабаровск

Spoga+Gafa 2020: 6-8 сентября, Кельн (Германия)

Строим дом. Осень 2020: 26-27 сентября, Санкт-Петербург

Строй-Volga-2020: 18-20 ноября, Волгоград

Энерго-Volga-2020: 18-20 ноября, Волгоград

ОСМ 2021: 26-29 января, Москва

КлиматАкваТЭкс 2021: 17-20 марта, Красноярск

Малоэтажное домостроение 2021: 17-20 марта, Красноярск

Строительство и архитектура 2021: 17-20 марта, Красноярск

BREX 2021: 24-26 марта, Москва

Expo-Russia Uzbekistan 2021: 1 апреля - 31 мая, онлайн

City Build Russia 2021 Москва: 28-29 апреля

DIY & Household Retail Russia 2021: 27-28 мая, Москва

BuildExpo Uzbekistan 2021: 16-18 июня, Узбекистан, г. Ташкент

ДагСтройБилд 2021: 23-24 июня, Махачкала

Expo-Russia Kazakhstan 2021: 23-25 июня, г. Алматы, Казахстан

AquaTherm Almaty 2021: 7-9 сентября, Казахстан, Алматы

UzStroyExpo 2021: 27-29 октября, Узбекистан, г. Ташкент

Новогодний подарок 2021: 9-12 и 16-19 декабря, Санкт-Петербург

MosBuild 2022: 29 марта - 1 апреля, Москва

Фестиваль Столярного Дела Москва 2022: 2-3 апреля

AtyrauBuild 2022: 6-8 апреля, Казахстан, Атырау

Загородный дом 2022: 7-10 апреля, Москва

Izbushka! 2022: 27-30 апреля, Челябинск

Металлообработка-2022: 23-27 мая, Москва

AstanaBuild 2022: 25-27 мая, Казахстан, Нур-Султан

Выставка Expo-Russia Kyrgyzstan 2022: 21-23 июня, г. Бишкек, Кыргызстан

Expo-Russia Serbia 2022: 7-9 сентября, г. Белград, Сербия

KazBuild 2022: 7-9 сентября, Казахстан, Алматы

СтройЭкспоКрым 2022, 15-17 сентября, Симферополь

ExpoDrev Russia 2022: 21-23 сентября, Красноярск

Expo-Russia Armenia 2022: 5-7 октября, г. Ереван, Армения

Машиностроение: С и Т 2022: 18-20 октября, Москва

RusWeld 2022: 24–27 октября, Москва

Белорусский дом 2022 и ОВК 2022: 27-29 октября, Беларусь, г. Минск

MITEX 2022: 8-11 ноября, Москва

Пром-Энерго-Volga-2022: 23-25 ноября, Волгоград

Expo-Russia Vietnam 2022: 7-9 декабря, г. Ханой, Вьетнам

AIRVent 2023: 14-17 февраля, Москва

Aquatherm Moscow 2023: 14-17 февраля, Москва

РСН и RosBuild 2023: 28 февраля - 3 марта, Москва

UzBuild 2023: 28 февраля - 3 марта, Узбекистан, г. Ташкент

Мир Климата Экспо 2023: 28 февраля - 3 марта, Москва

Стройиндустрия Севера 2023: 1-3 марта, Якутск

Outdoor Dacha 2023: 21-23 марта, Москва

MosWeekHome 2023: 4-8 апреля, Москва

Intelligent Building Expo 2023: 5-6 апреля, Казахстан, г. Астана

СПТО.Краны 2023: 5-7 апреля, Москва

Сибирская строит. неделя 2023: 23-24 мая, Омск

ЧеченСтрой Экспо 2023: 24-25 мая, Грозный

Всеросс. нед. охр. труда 2023: 26-29 сентября, Сочи

СТМ 2023: 17-19 октября, Новосибирск

Опросы

Чьими рекомендациями Вы руководствуетесь при выборе строительного оборудования и материалов?

Результаты опроса

Загрузка ... Загрузка ...

Защита от импульсных перенапряжений: пока гром не грянул

2590

Защита от импульсных перенапряженийМолния — это колоссальный выброс энергии, длящийся доли секунды. И неудивительно, что, согласно многим древним верованиям, она вкупе с громом находилась в ведении верховного божества. Даже в наш просвещенный век многие люди испытывают инстинктивный страх перед этим природным явлением. Впрочем, эту боязнь нельзя назвать совершенно беспочвенной: ежегодно по всему миру грозы причиняют ущерб, исчисляемый миллиардами долларов, и уносят тысячи человеческих жизней.

Отечественные нормы предусматривают установку молниезащитной системы (МЗС) на все здания. Но Энергонадзор проверяет только промышленные и общественные объекты. Так как частные дома, как правило, не подлежат проверке, то их защитой зачастую пренебрегают. Отметим, что гроза наиболее опасна для отдельно стоящих на открытой местности домов, коттеджей и т. п. Но и в городских условиях разряд способен нанести серьезный урон, испортив дорогую электронную технику. Можно, конечно, отмахнуться от проблемы: мол, нечего нас пугать, гроза не первый год случается, и все время как-то обходилось. Спорить не будем, для оправдания такой позиции отыщется масса примеров — только каждое лето жизнь предъявляет все новые аргументы.

Пожалуй, повинно в том и вездесущее русское «авось», и недавнее прошлое — со времен перестройки более десяти лет подобные вещи мало кого беспокоили. Однако с приходом третьего тысячелетия многое изменилось к лучшему: появились новые стандарты по устройству и установке защитного оборудования, заметно вырос потребительский интерес. Однако немало задач еще ждут своего решения. Например, надо согласовать существующую терминологию и разработать единый руководящий документ, регламентирующий выбор и применение защитных устройств.

В этой статье мы познакомим вас с такой непростой темой, как молниезащита. И начнем с вопроса, как происходит грозовой разряд.

НЕБЕСНАЯ ИСКРА
Сперва в облаке образуется и начинает движение вниз слабо светящийся канал с током несколько сот ампер (так называемый нисходящий лидер). Молния бьет в место, где он коснется земли. Однако чаще с окружающих возвышенных объектов (домов, деревьев и т. д.) возбуждаются встречные лидеры. Соприкоснувшись с нисходящим, один из них провоцирует удар в то сооружение, с которого он развился.

Когда контакт с поверхностью установлен, происходит разряд, сопровождающийся разогревом канала до десятков тысяч градусов, его ярким свечением и резким расширением, воспринимаемым на слух как раскат грома.

Ток молнии имеет непрерывную составляющую, варьирующуюся от единиц до сотен ампер и существующую на протяжении всей вспышки (в среднем 0,2 с). На нее накладываются один или более импульсных всплесков: первый — самый мощный и продолжительный, последующие — сравнительно слабые, но они «проскакивают» намного быстрее и потому создают основные электромагнитные помехи, напрямую зависящие от скорости изменения тока.

Оценивая вероятность прямого удара молнии (ПУМ) в постройку, принимают во внимание, что возвышенный объект притягивает на себя разряды, которые в его отсутствие поразили бы некоторую окружающую территорию. Ее площадь вычисляют по специальным формулам исходя из габаритов здания. Далее из карт грозовой активности узнают число ударов молнии на квадратный километр для данной местности. Умножив его на полученную ранее площадь, находят искомую вероятность (здесь мы не учитываем, что более высокие сооружения, расположенные поблизости, частично или полностью защищают ее от ПУМ). Например, для небольшого одно- или двухэтажного дома, расположенного в Московской области, риск поражения не превысит 1%. Иными словами, молния будет попадать в него раз в сто лет. Казалось бы, опасность невелика. Тем более что, во-первых, расчетная величина выше наблюдаемой, так как вычисления проводят с запасом. Во-вторых, не все попадания приводят к несчастью. Тем не менее они случаются регулярно. И, что еще важнее, негативные последствия разрядов не исчерпываются прямыми ударами в сооружения (подробнее об этом в следующей главе).

Теперь несколько слов о картах молниеактивности. Одна из них есть в Приложении к «Правилам устройства электроустановок». Она составлена на основе более чем сорокалетних наблюдений и охватывает всю территорию СССР. По ней узнают среднегодовую продолжительность гроз. Отметим, что карта составлена двадцать лет назад и на особую точность не претендует, поэтому лучше пользоваться региональными данными, если таковые для вашего района имеются.

Систему защиты размещают на самом здании и стараются сделать максимально незаметнойНЕ О ТОМ КРЕСТИМСЯ
Интересно, что самое «устрашающее» из проявлений грозового разряда — раскат грома — не несет никакой опасности. Что же представляет реальную угрозу, мы сейчас и обсудим.

Прямое попадание в сооружение приводит к неконтролируемому растеканию заряда по его конструкции, что, в свою очередь, грозит пожаром из-за разогрева материалов или опасного искрения. Риск возгорания сохраняется, даже если разряд произошел в некоторой окрестности объекта: распространяющийся по земле ток по проводящим подземным коммуникациям вроде газо- или водопровода частично попадет внутрь здания.

Отдельно следует поговорить об отрицательном влиянии молнии на электрооборудование. Если она проникнет в сеть питания, то способна сжечь множество приборов, пока не утратит свою силу. Такое происходит при попадании в воздушную линию электропередач (ЛЭП) или когда растекающийся по грунту заряд встречает силовой кабель, место рабочего или защитного заземления. Но это еще полбеды.

В большинстве случаев грозовой разряд создает мощное электромагнитное излучение, из-за которого в проводниках возникает микросекундный скачок напряжения с пиковым значением несколько киловольт (импульсное перенапряжение). Конечно, разрушительная сила такого воздействия гораздо меньше, чем у обсуждавшегося ранее. Но оно имеет гораздо больший «радиус поражения» и потому случается намного чаще. Иной раз тогда, когда разряды происходят между облаками или внутри них.

К импульсным перенапряжениям наиболее чувствительна электронная аппаратура (компьютеры, офисная техника, аудио- и видеосистемы и т. д.). Она сбоит и даже выходит из строя. В связи с тем, что все больше подобных приборовпоявляется в наших домах и стоят они подчас немалых денег, актуальность молниезащиты неуклонно растет.

Отметим, что особое коварство описанных воздействий в том, что против них совершенно бессильны традиционные устройства, предохраняющие от повышенных токов и напряжений (автоматы, стабилизаторы напряжения и т. п.). Они попросту не успеют отреагировать, поэтому требуется применение специализированного защитного оборудования.

Исходя из вероятности поражения постройки, потенциальных убытков и тех денег, что вы готовы потратить на систему, проектировщики выбирают один из четырех уровней защиты, предусмотренных для жилых зданий высотой до 60 м. Согласно ему определяют, во-первых, плотность размещения защитных конструкций, чему соответствует разная вероятность гарантированного отвода ПУМ (для самого слабого уровня она равна 80%, для самого сильного — 98%). Во-вторых, параметры молнии, используемые при расчетах (пиковое значение тока, полный заряд и т. д.).

МЗС делят на внешнюю и внутреннюю. Первая предохраняет объект от прямого удара, вторая защищает электрооборудование от токовых скачков, возникающих в сети при грозовых разрядах. Рассмотрим каждую из них более подробно.

Систему защиты размещают на самом здании и стараются сделать максимально незаметнойВНЕШНЯЯ ЗАЩИТА
Внешняя система оттягивает разряд на себя и «безболезненно» препровождает его в землю. В простейшем, с конструктивной точки зрения, исполнении она выглядит как мачта, расположенная от дома на некотором удалении и на несколько метров возвышающаяся над ним. В народе ее окрестили «громоотводом», а специалисты предпочитают название «молниеотвод», так как оно точнее отражает назначение этого приспособления. Изобрел его еще в восемнадцатом веке американский президент Бенджамин Франклин, известный нам в основном по портрету на стодолларовой купюре.

Сейчас для частных загородных домов такие молниеотводы применяют редко — просто хозяева не хотят портить вид участка. Поэтому систему размещают на самом здании и стараются сделать максимально незаметной. Проектируют ее с помощью компьютерной программы индивидуально для каждого случая. В общем же она складывается из трех частей: молниеприемников, токоотводов и заземлителей. Назначение каждой компоненты полностью отражено в ее названии. По возможности в качестве элементов внешней МЗС используют подходящие конструкции здания. Например, стальная арматура железобетонных строений служит токоотводом, если ее звенья соединены.

Молниеприемники представляют собой некоторую комбинацию стержней, натянутых тросов и металлической сетки. С их помощью формируют зону защиты, покрывающую здание целиком вместе со всеми выступающими конструкциями: антеннами, трубами и т. д.

Часто у владельцев домов с металлической кровлей возникает вопрос, способна ли она работать молниеприемником? Да, если ее толщина не менее 0,5 мм. В то же время ПУМ прожжет в ней несколько отверстий, по размерам сопоставимых с рублевой монетой, нарушив тем самым герметичность, поэтому применять ее для таких целей не рекомендуют. В принципе, если стальной лист не тоньше 4 мм, то грозовой разряд дыр на нем не оставит, но такими обычно крыши не кроют.

Систему защиты размещают на самом здании и стараются сделать максимально незаметнойВ последнее время на рынке появились активные молниеприемники (ионизаторы). Они существенно упрощают внешнюю МЗС, так как имеют больший радиус действия в сравнении с традиционными приспособлениями. По крайней мере так считают разработчики этих устройств. Однако это признают не во всех странах. Например, во Франции активные молниеприемники интенсивно продвигают, а в России вслед за Германией официально принята точка зрения, что они не обладают никакими преимуществами перед обычными, стержневыми.

Основное назначение токоотводов — доставить грозовой заряд до заземлителей. При этом важно, чтобы он расходился по нескольким параллельным путям минимальной длины. Токоотводы стараются размещать равномерно по периметру здания, вблизи его углов и вдали от окон и дверей. Их располагают внутри или в непосредственной близости от стен при условии, что повышение температуры не вызовет возгорания. Если такая опасность есть — то на расстоянии не менее 10 см. Вблизи поверхности земли они должны быть соединены горизонтальными поясами, уравнивающими потенциалы.

Во всех случаях, за исключением отдельно стоящего молниеотвода, заземление МЗС, электроустановок и средств связи необходимо совмещать. Для жилых строений его выполняют одним из двух способов.

Заземление по контуру: по периметру здания на расстоянии 1 м от фасадных стен закладывают металлическую полосу на глубину не менее 0,5 м. Этот вариант отличают дешевые расходные материалы и простота исполнения, однако придется серьезно поработать лопатой. Кроме того, сопротивление системы будет зависеть от времени года и влажности грунта.

Глубинное заземление: в нескольких местах вокруг здания в грунт забивают металлические стержни. Как можно догадаться из названия, степень их погружения обычно гораздо больше, чем в предыдущем случае (более 3 м). Таким образом исключают сезонную зависимость сопротивления, однако требуются более дорогие материалы и специальное оборудование. Также необходимо быть уверенным, что в местах забивания нет никаких подземных коммуникаций.

Главный показатель качества заземления — его сопротивление. По стандарту оно не должно превышать 10 Ом. Но на самом деле, чем меньше, тем лучше, особенно когда дело касается молниезащиты. Во-первых, за счет этого снижается риск того, что молния пойдет в обход внешней МЗС по конструкциям дома, во-вторых, повышается эффективность внутренней защиты.

Другой важный момент — коррозийная стойкость заземлителей, поэтому рекомендуем поинтересоваться у проектировщика, какой у них гарантированный срок службы.

Собирают внешнюю молниезащитную систему из отдельных элементов наподобие конструктора. Молниеприемники и токоотводы делают из алюминия, в отдельных случаях — из меди (например, на домах с медной кровлей или красной черепицей). Заземлители обычно стальные с антикоррозийным покрытием. В большинстве случаев звенья системы быстро и удобно скрепляют между собой зажимами. Хотя предусмотрено также соединение сваркой или пайкой.

К ведущим производителям оборудования для внешней молниезащиты на российском рынке относят компании Dehn (Германия), Galmar (Польша), OBO Bettermann (Германия).

Стержни для глубинного заземления фирмы GalmarПРИМЕР: СТЕРЖНИ ДЛЯ ГЛУБИННОГО ЗАЗЕМЛЕНИЯ ФИРМЫ GALMAR
Как пример рассмотрим стержни для глубинного заземления, предлагаемые фирмой Galmar. Их делают из стали с медным покрытием толщиной 0,25 мм — в сравнении с оцинковкой его коррозийная стойкость больше. Производитель гарантирует, что срок службы его изделий составит не менее 30 лет. Если учесть, что эта цифра дается для любого грунта, то в нашей средней полосе, где почва не самая агрессивная, они обеспечат должное качество заземления лет на сто.

Длина стержня от 1,2 до 3 м и диаметр 1/2, 5/8 или 3/4 дюйма. На обоих его концах сделана резьба. С одного края к нему прикручивают стальной наконечник, обеспечивающий более легкое вхождение в почву, с другого — головку, принимающую на себя удары. Его почти целиком забивают в грунт вибромолотом, через муфту подсоединяют следующее звено и продолжают погружение. Таким способом стержни Galmar зарывают на глубину до 30 метров. Благодаря этому значительно сокращается число точек заземления, а следовательно, упрощается устройство и процесс установки всей системы. Кроме того, полностью ликвидируется зависимость сопротивления от погодных условий и времени года.

Медный слой наносят на сталь электролитическим осаждением, при котором между металлами образуется неразрывная молекулярная связь, поэтому при вбивании не происходит его повреждения или отделения, как это иногда случается с оцинковкой. Покрытие также обладает хорошей пластичностью, то есть не отходит и не трескается, даже если согнуть стержень на 180 градусов. Кроме того, продукты коррозии цинкового покрытия со временем увеличивают сопротивление заземления. С омедненными изделиями такого не происходит, так как в первую очередь разрушается стальной сердечник, при этом контакт с почвой не ухудшается.

В настоящее время продукция Galmar поставляется более чем в 20 стран мира, а объем производства доходит до ста тысяч стержней в месяц. Это еще раз доказывает их надежность и удобство в использовании. На апрель 2007 года цена стержней в Москве составляет порядка 1000 руб./п.м.

ВНУТРЕННЯЯ ЗАЩИТА
Даже при наличии внешней МЗС в случае прямого или близкого удара молнии часть ее тока попадает внутрь здания по трубам, кабелям т. д. На них образуется опасный потенциал, чреватый искрениями и поражением людей. Чтобы это предотвратить, с помощью специальных приспособлений все протяженные проводящие конструкции соединяют вместе и подключают к заземлению.

Теперь обратимся к наиболее серьезной и сложной проблеме: как обезопасить электрооборудование. Она затрагивает практически всех, кто им пользуется. Самый популярный метод решения в быту — выдернуть шнур питания из розетки. Однако это не очень удобно и не всегда осуществимо. Например, дома никого не оказалось или прибор требует непрерывной работы.

По этим причинам предпочтительнее установка устройств защиты от импульсных перенапряжений (УЗИП). Их подключают параллельно нагрузке, и, когда напряжение превышает заданный уровень, они резко сокращают свое сопротивление, из-за чего импульс проходит через них в обход оборудования. В зависимости от силы и длительности токовой волны, на которые эти приборы рассчитаны, они бывают I, II и III класса (или B, C и D).

В международном и российском стандартах использованы цифровые обозначения, однако и буквенные изредка еще встречаются.

Внутренняя МЗС здания состоит из трех ступенейВнутренняя МЗС здания состоит из трех ступеней (см. схему — для увеличения нужно кликнуть на картинку), причем каждая содержит УЗИП соответствующего класса и имеет свое назначение. Так, первая помещается на вводе в здание и гасит основной импульс грозового разряда, когда он проникает в сеть питания, вторая располагается в распределительных щитах и нейтрализует остаточные токи, третья находится непосредственно возле потребителей и предохраняет от скачков напряжения, наводимых электромагнитным излучением. Такое расположение связано со стойкостью изоляции электрооборудования к импульсным перенапряжениям: на вводе главного распределительного щита (ГРЩ) их величина не должна превышать 6 кВ, после него — 4 кВ, на выходах квартирных щитов — 2,5 кВ и на приборах, подключаемых непосредственно к розеткам, — 1,5 кВ.

Впрочем, место первой и второй ступеней сильно варьируется в зависимости от конкретной ситуации, иногда их размещают вместе в отдельном шкафу, а в некоторых случаях совмещают (для этого есть специальные УЗИП I+II класса). Что касается третьей, то важно, чтобы расстояние по кабелю питания от нее до оборудования не превышало 15 метров, поэтому часто приборы III класса изготавливают в виде розеток, переходников и т. п.

К основным техническим параметрам УЗИП относят следующие.

Тип устройства. Для низковольтных сетей их, как правило, изготавливают на основе разрядников или варисторов. Главное отличие заключается в реакции на импульс: у первых сопротивление резко падает почти до нуля при превышении напряжением определенного порога, у вторых оно снижается с ростом величины тока.

Максимальное рабочее напряжение определяет наибольшее действующее напряжение, которое устройство выдерживает продолжительное время без ущерба для себя. Заметим, что по мере использования прибора эта величина снижается.

Максимальный разрядный ток равен пиковому значению самого сильного скачка, который устройство пропустит через себя и не выйдет из строя. Иногда указывают также номинальный разрядный ток — его прибор выдерживает многократно. При определении этих параметров используют один или несколько типовых испытательных импульсов. Их форму обозначают двумя числами, записанными через косую черту: первое характеризует продолжительность нарастания скачка, второе — время, необходимое, чтобы ток опустился до половины пикового значения (например, устройства I класса проверяют волной 10/350 мкс).

Уровень защиты. Конечно, УЗИП сглаживают импульс не полностью — остаются скачки напряжения, амплитуду самого сильного и определяет данный параметр.

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ
В ходе эксплуатации устройств их защитные свойства снижаются. Этот процесс называют старением. Интенсивнее всего он происходит при нескольких близких ударах, повторяющихся с малыми перерывами. Дело в том, что прибор принимает на себя часть энергии импульса, отчего повышается его температура, и если нет достаточного времени для остывания, то он перегревается и, как следствие, уменьшается его максимальное рабочее напряжение. Если оно окажется меньше действующего значения в сети, через устройство потекут значительные токи, быстро повышающие его температуру, что может вызвать деформацию корпуса, проплавление пластмассы и в конечном итоге короткое замыкание на DIN-рейку и даже пожар.

Чтобы не допустить подобных инцидентов, УЗИП на базе варисторов оснащают терморасцепителем. Механизм его действия, как правило, очень прост: при повышении температуры расплавляется паяное соединение пружинного контакта — он отходит и отключает аппарат от сети. При этом индикатор работоспособности, расположенный на корпусе, меняет свое состояние — значит, требуется замена. В ряде случаев доступна и дистанционная сигнализация. Некоторые приборы I класса состоят из нескольких варисторов, если часть из них выйдет из строя, то остальные все равно обеспечат защиту, хотя менее надежную.

Серьезную угрозу представляет ситуация, когда действующее напряжение сети превышает максимальное рабочее (например, при «обрыве нуля», когда оно поднимается до 80 В). При этом защитное устройство сработает и через него пойдет значительный ток (до нескольких сотен ампер). В подобных условиях терморасцепитель не всегда успевает отреагировать из-за инерционности конструкции, и прибор разрушается в течение нескольких секунд.

Чтобы этого избежать, производители рекомендуют устанавливать последовательно со своими изделиями плавкие предохранители (их номинал указывают в технической документации на УЗИП). Они обладают гораздо меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями и более устойчивы к токовым скачкам, возникающим при разрядах молнии.

Практический опыт и испытания показывают, что автоматы часто повреждаются при воздействии импульсных перенапряжений — их контакты подгорают или привариваются друг к другу. После этого приборы становятся непригодными к употреблению.

Многие фирмы предлагают устройства I и II классов, состоящие из базы для установки на DIN-рейку и сменного блока с защитным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое исполнение на первый взгляд кажется более выгодным и удобным, чем монолитный корпус. Однако контакты подобной конструкции пропускают не более 25 кА для волны 8/20 мкс и 20 кА для 10/350 мкс. При более высоких импульсных токах могут подгорать или разрушаться клеммы как на вставке, так и на основании. После этого дальнейшее использование поврежденного элемента нежелательно, так как резко увеличивается сопротивление в месте соединения.

ЗАКЛЮЧИТЕЛЬНОЕ СЛОВО
В этой статье мы не касались устройств защиты для телефонных и информационных линий. Они зачастую отличаются от приборов, предназначенных для электросети, набором технических параметров, внешним видом и способом подключения (например, некоторые представляют собой переходники под соответствующий разъем). Но принцип действия у них тот же самый.

Напомним, что прямые грозовые удары представляют наибольшую опасность для расположенных на открытой местности загородных коттеджей. Их владельцам следует всерьез задуматься об установке как внешней, так и внутренней молниезащиты. Первая предотвратит пожар при прямом разряде в дом, вторая сохранит вашу электротехнику. Проектирование и установку системы надо доверить профессионалам. Оборудовать городскую квартиру полноценной молниезащитой собственными силами вряд ли удастся. Тем не менее, чтобы обезопасить аппаратуру от импульсных перенапряжений, нужно ввести вторую ступень в этажный щиток и снабдить всех потребителей устройствами III класса. Последнее удобнее сделать с помощью переходников на розетки, специальных сетевых удлинителей и прочих подобных приборов, так как они элементарны в установке. Наконец, такая система предохраняет оборудование не только от грозовых, но и от коммутационных перенапряжений, случающихся при переключении мощных потребителей, коротких замыканиях в сети и т. п.


Полный вариант статьи в формате pdf смотрите в выпуске журнала «Всё для стройки и ремонта» серии «Потребитель» №11’2007

Июнь 2008 г.

Самое читаемое за месяц

1-й, везде

2-й и 3-й, СДВОЕННЫЙ, везде

4-й, везде